

www.albedotelecom.com

PTP Testing with xGenius: G.8273.2 T-BC Test

標準ITU-T G.8273.は、Telecom Boundary Clocks(T-BC)およびTelecom Time Slave Clocks(T-TSC)の必要な性能レベルを定義して います。これらのデバイスに要求される精度レ ベルは、タイムエラー(TE)やTEに基づく他の 性能指標の観点で、数ナノ秒の範囲であること が多いため、特別な測定手順が必要となること があります。

Figure 1 This test verifies the PTP performance level of a T-BC and it can be used to verify compliance of standard ITU-T G.8273.2

本書では、クラスCT-BCの性能を測定するシナ リオを説明します。試験対象のデバイスがITU-T G.8275.1プロファイルを実行しており、ネット ワークのすべてのノードで完全なタイミングサ ポートを実装していると想定しています。この 完全なタイミングサポートには、すべてのネッ トワークノードにおけるT-BC機能の実装が技術 的に必要となります。

1. リファレンスの設定

xGeniusには内蔵のGNSS受信機が装備されてい る場合があります。これらのユニットにはアン テナを接続するためのSMAメスコネクタが付属 しています。内蔵GNSS受信機付きのユニットに は、5メートルの同軸ケーブルと10メートルの 延長ケーブルを備えたコンパクトアンテナも供 給されます。異なるアンテナを使用することも 可能ですが、GNSSモジュールの仕様を考慮する 必要があります。

T-BC試験では絶対的なTAIまたはUTC時間は必要 なく、試験の唯一の目的は2つのBCポート間の 相対的なタイミングであるため、GNSSリファレ ンスは必須ではありません。ただし、試験対象 のデバイスが外部リファレンスに最初にロック されている場合には、ネットワークの時間ス ケールから試験の時間スケールへの移行を容易 にするために、GNSSリファレンスの使用が推奨 されます。

内蔵GNSSモジュールを使用するには、以下の手順に 従ってください:

- アンテナをユニットに取り付けます。このと き、できるだけ開けている場所に設置してくだ さい。アンテナの視界内に十分な衛星がないと 同期に失敗することがあります。また、視界内 の衛星の数が減ると、テストの精度が低下する 場合があります。
- ホームパネルから[Config]に移動し、ポート設定 パネルを表示します。
- 3. [Reference clock]に移動します。
- 4. [Input clock]を[GNSS]に設定します。
- 5. [LEDS]を押してテストのステータスを表示します。
- 6. REFおよびLOCKのLEDが緑色になるまで待ちま す。

注: xGeniusのOCXOバージョンのLockプロセスには 約10分かかる場合があります。ルビジウムユニッ トのCoarse lockプロセスには約20分かかります。

All rights reserved. No part of this document may be stored, copied or transmitted, by any means, without the permission in written of the Legal Owner

Networking & Telecoms - PTP Testing with xGenius: G.8273.2 T-BC Test 2/4

注: xGeniusのルビジウムおよびOCXOバージョ ンは、LOCK LEDが緑色になるとテストの準備が 整いますが、ルビジウムユニットは最大精度を 提供する準備がまだ整っていません。これらの ユニットは、リファレンスに完全にLockされる 前にFine lock状態に移行します。Fine lock状態 は、ルビジウムユニットで約4時間続くことが あります。OCXOユニットにはFine lock状態がな く、Coarse lockプロセスが終了すると直接Lock されます。現在のLock状態(Locking、Fine locking、Locked、Holdoverなど)を[Oscillator]メ ニューの[Reference clock]メニューで確認できま す。

GNSSプロパティの設定

ユーザーは、テストユニットでGNSSインター フェースを任意に設定できます。必須ではあ りませんが、この方法で精度を向上させるこ とは非常に重要です。必要な手順は次の通り です:

- ホームパネルから[Config]に移動し、ポート設定パネルを表示します。
- 2. [Reference clock]に移動します。
- 3. [GNSS receiver]に移動します。
- アンテナ遅延補正フィールドでアンテナ ケーブルの補償を設定します。
- [Active GNSS]設定でGPS、 GLONASS、 Beidou、Galileoのいずれかを有効または無 効にします。
- 6. [Fixed-position mode]に移動します。
- Position averaging time]を調整し、[Fixed-position mode]を[Auto-average]に設定して 位置平均を有効にします。
 [Fixed-position status]フィールドには、
 [Averaging]と表示されます。

注: 合理的な精度を得るためには、少なくと も1時間の位置平均が必要です。

注: テストユニットの地理的位置が変更され ない限り、位置平均プロセスは一度だけ実行 すれば十分です。ユニットはGPSアンテナに 接続されるたびに位置(経度、緯度、高度) の変化を確認します。座標に変化が検出され ると、ステータスフィールドにエラーメッ セージが表示され、モードが無効になりま す。 8. 固定位置ステータスが[Active]になるまで待ちます。テスト準備完了です。

注:理論的には、位置平均プロセスが終了する 前にテストを開始することが可能です。この 機能による時間推定の向上は、自動平均プロ セスの終了時から自動的に適用されます。

2. PTPテスト

xGeniusのPortAは、PTPグランドマスター として動作するように設定できます。同時 に、同一ユニットのPortBは、入力位相を 自身の内部時間と比較し、TEを含むさまざ まな性能パラメータを生成する能力を持つ PTP擬似スレーブとして設定できます。 単一のユニットを使用するPTPグランドマ スターとスレーブの同時シミュレーション には、2つの重要な利点があります:

Figure 2 Albedo xGenius test and clock reference interfaces used in this testing scenario.

- 単一のユニットでT-BCテストを実行できるので、2つのユニットを使用するテストで必要なリソースを節約できます。
- 同じオシレーターでPTP出力の生成と入力 の解析するため、多くのエラー源が補正さ れ、テスト精度が向上します。

Networking & Telecoms - PTP Testing with xGenius: G.8273.2 T-BC Test 3/4

ユニットの接続

このシナリオでは、テストインターフェース が電気的であると仮定しています。PortAの RJ-45ポートをT-BC PTP入力に、PortBのRJ-45 ポートをT-BC PTP出力に接続します。

- 1. ホームパネルから[Config]に移動し、ポート 構成パネルを表示します。
- 2. [Mode]を選択してモード選択メニューに入ります。
- 3. [Ethernet endpoint]を選択します。

BC / TC テストの有効化

xGeniusには、PTPのためのさまざまなテストオ プションが含まれています。ここでは、BCお よびTCのためのテストオプションを説明しま す。必要なテストモードを有効にする手順は 次の通りです:

- ホームパネルから[Test]に移動します。テ スト構成パネルが表示されます。
- 2. [PTP]に移動します。
- 3. [PTP mode]を[BC/TC test]に設定します。

トップ通知エリアに2つのラベルが表示されま す。最初のラベル(PTP)は、PTPがユニット に有効であることを示し、次のラベル(MS) は、ユニットが同時にPTPマスターとPTPス レーブをエミュレートしていることを示しま す。

PTPマスターの設定

PortAでPTP刺激信号を生成するために、次の 手順が必要です。ポートがITU-T G.8275.1プロ ファイルを実行していると仮定します。

- 1. ホームパネルから[Test]に移動します。 テ スト構成パネルが表示されます。
- 2. [PTP]に移動します。
- 3. [Grandmaster A settings]に移動します。
- 4. [Message timing]に移動します。
- 5. [Sync TX interval]を[16 pkt/s]に、 [Delay Request TX interval]を[16 pkt/s]に、 [Announce TX interval]を[8 pkt/s]に設定しま す。
- 6. [BACK]ボタンをクリックし、 [Message timing]パネルを終了します。
- [Domain]、[Priority 1]および[Priority 2]をネットワークに適した値に設定します。

- 8. [Clock class]を[Synchronized to PRC]に設定します。
- 9. [Clock accuracy]を[100 ns]に設定します。
- 10. [Time properties]に移動します。
- 11. [Mode]を[Manual]に設定します。
- 12. [UTC Offset valid]を[Yes]に、 [Timescale]を[TAI]に、 [Time traceable]を[Yes]に、 [Frequency traceable]を[Yes]に、 [Time source]を[GPS]に設定します。

PTP疑似スレーブの設定

IEEE1588-2008性能分析をテストポートBで有効 にするために、次の手順に従います。最も単 純なテストポート構成(1000BASE-Tインター フェース、VLANなし)が使用されると仮定 し、ポート固有の設定は必要ありません。PTP プロファイルはPortAと同じITU-T G.8275.1で す。

- ホームパネルから[Test]に移動します。 テスト構成パネルが表示されます。
- 2. [PTP]に移動します。
- 3. [Slave clock B settings]に移動します。
- 4. [Message timing]に移動します。
- 5. [Announce TX interval]を[8 pkt/s]に設定します。
- 6. [BACK]ボタンをクリックして[Message timing] パネルを終了します。
- 7. [Domain]をネットワークに適した値に設定 します。

以前の設定が正しい場合、画面の上部に表示 されるPTP表示(PTP MS)は黄色から緑色に変 わります。

テストしきい値の設定

PTPがアクティブになると、ユーザーは実行す るテストを設定し、結果に対するしきい値を 設定する必要があります。このセットアップ では、TEおよびMTIE / TDEVテストが行われま す。TEテストを有効にするための特別な操作 は必要ありませんが、次の手順でTEしきい値 を設定する必要があります:

- ホームパネルから[Test]に移動します。テ スト構成パネルが表示されます。
- 2. [PTP two way TE objectives]に移動します。

Professional Telecom Solutions

Networking & Telecoms - PTP Testing with xGenius: G.8273.2 T-BC Test 4/4

- 3. [Enable]を[On]に設定します。
- 4. [Total peak]を[30 ns]に設定します。
- [PTP two way TE objectives]パネルの残りの すべてのパラメータを[0(ゼロ)]に設定しま す。

MTIEおよびTDEVを有効にし、G.8273.2テスト に適したしきい値を設定するには、次の手順 に従ってください:

- ホームパネルから[Test]に移動します。テス ト構成パネルが表示されます。
- 2. [PTP wander test]に移動します。
- 3. [Enable]を[On]に設定してMTIE /TDEVテストを 有効にします。
- 4. [Mask source]を[Standard]に設定します。
- 5. [Device Type]を[PTP ITU Masks]に設定します。
- 6. [Standard]を[BC G.8273.2 dTE (CT)]に設定します。 ITU-T G.8273.2 Dynamic TE (Class C T-BC)

Figure 3 ITU-T G.8271.1 MTIE and TDEV masks to be verified at the output of the Class C T-BC

テストの実行

テストは、テストユニットで[RUN]を押すこと で開始できます。これで、TEおよびMTIE/TDEV がリアルタイムで計算されます。TEの結果を 確認するには、次の手順に従ってください:

- ホームパネルから[Results]に移動します。 テストポート結果パネルが表示されます。
- 2. Port Bを選択してポート固有の結果に入り ます。

3. [PTP]に入ってPTPプロトコルに関する結果 を表示します。

 [Time Error statistics]に移動して両方向TE結 果を取得します。

5. Total、Low frequency、およびHigh frequency TEの最大値と最小値を確認し、ITU-T G.8273.2 で定義された限度内であることを確認しま す。

MTIE / TDEVテストは、TEテストと同時に実行 されます。リアルタイムの結果は次の方法で 確認できます:

- ホームパネルから[Results]に移動します。 テストポート結果パネルが表示されます。
- Port Bを選択してポート固有の結果に入ります。
- 3. [PTP]に入ってPTPプロトコルに関する結果 を表示します。
- 4. [PTP wander test]に移動します。
- 5. MTIEまたはTDEVのいずれかを選択します。
- MTIE結果パネルで Time、TIE、MTIE、およびMask結果、またはTDEV結果パネルではTime、TDEV、およびMask結果を確認できます。

注: TIE、MTIE、およびTDEV値は、それぞれ pktfilteredTIE、pktfilteredMTIE、および pktfilteredTDEVと対応しています。

注: 最初の結果が表示されるまでの待ち時間 は、フィルター設定に依存します。

 TEおよびMTIE / TDEVテストを停止するに は、[RUN]を再度押します。